Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Archives of medical research ; 2023.
Article in English | EuropePMC | ID: covidwho-2278704

ABSTRACT

Background and Aims . Mexico is among the countries with the highest estimated excess mortality rates due to the COVID–19 pandemic, with more than half of reported deaths occurring in adults younger than 65 years old. Although this behavior is presumably influenced by the young demographics and the high prevalence of metabolic diseases, the underlying mechanisms have not been determined. Methods . The age–stratified case fatality rate (CFR) was estimated in a prospective cohort with 245 hospitalized COVID–19 cases, followed through time, for the period October 2020–September 2021. Cellular and inflammatory parameters were exhaustively investigated in blood samples by laboratory test, multiparametric flow cytometry and multiplex immunoassays. Results . The CFR was 35.51%, with 55.2% of deaths recorded in middle–aged adults. On admission, hematological cell differentiation, physiological stress and inflammation parameters, showed distinctive profiles of potential prognostic value in patients under 65 at 7 d follow–up. Pre–existing metabolic conditions were identified as risk factors of poor outcomes. Chronic kidney disease (CKD), as single comorbidity or in combination with diabetes, had the highest risk for COVID–19 fatality. Of note, fatal outcomes in middle–aged patients were marked from admission by an inflammatory landscape and emergency myeloid hematopoiesis at the expense of functional lymphoid innate cells for antiviral immunosurveillance, including NK and dendritic cell subsets. Conclusions . Comorbidities increased the development of imbalanced myeloid phenotype, rendering middle–aged individuals unable to effectively control SARS–CoV–2. A predictive signature of high–risk outcomes at day 7 of disease evolution as a tool for their early stratification in vulnerable populations is proposed. Graphical abstract Image, graphical abstract

2.
Arch Med Res ; 54(3): 197-210, 2023 04.
Article in English | MEDLINE | ID: covidwho-2278705

ABSTRACT

BACKGROUND AND AIMS: Mexico is among the countries with the highest estimated excess mortality rates due to the COVID-19 pandemic, with more than half of reported deaths occurring in adults younger than 65 years old. Although this behavior is presumably influenced by the young demographics and the high prevalence of metabolic diseases, the underlying mechanisms have not been determined. METHODS: The age-stratified case fatality rate (CFR) was estimated in a prospective cohort with 245 hospitalized COVID-19 cases, followed through time, for the period October 2020-September 2021. Cellular and inflammatory parameters were exhaustively investigated in blood samples by laboratory test, multiparametric flow cytometry and multiplex immunoassays. RESULTS: The CFR was 35.51%, with 55.2% of deaths recorded in middle-aged adults. On admission, hematological cell differentiation, physiological stress and inflammation parameters, showed distinctive profiles of potential prognostic value in patients under 65 at 7 days follow-up. Pre-existing metabolic conditions were identified as risk factors of poor outcomes. Chronic kidney disease (CKD), as single comorbidity or in combination with diabetes, had the highest risk for COVID-19 fatality. Of note, fatal outcomes in middle-aged patients were marked from admission by an inflammatory landscape and emergency myeloid hematopoiesis at the expense of functional lymphoid innate cells for antiviral immunosurveillance, including NK and dendritic cell subsets. CONCLUSIONS: Comorbidities increased the development of imbalanced myeloid phenotype, rendering middle-aged individuals unable to effectively control SARS-CoV-2. A predictive signature of high-risk outcomes at day 7 of disease evolution as a tool for their early stratification in vulnerable populations is proposed.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Pandemics , Prospective Studies , Comorbidity , Hematopoiesis
3.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2045364

ABSTRACT

Mexico, one of the countries severely affected by COVID-19, accumulated more than 5. 1 all-cause excess deaths/1,000 inhabitants and 2.5 COVID-19 confirmed deaths/1,000 inhabitants, in 2 years. In this scenario of high SARS-CoV-2 circulation, we analyzed the effectiveness of the country's vaccination strategy that used 7 different vaccines from around the world, and focused on vaccinating the oldest population first. We analyzed the national dataset published by Mexican health authorities, as a retrospective cohort, separating cases, hospitalizations, deaths and excess deaths by wave and age group. We explored if the vaccination strategy was effective to limit severe COVID-19 during the active outbreaks caused by Delta and Omicron variants. Vaccination of the eldest third of the population reduced COVID-19 hospitalizations, deaths and excess deaths by 46–55% in the third wave driven by Delta SARS-CoV-2. These adverse outcomes dropped 74–85% by the fourth wave driven by Omicron, when all adults had access to vaccines. Vaccine access for the pregnant resulted in 85–90% decrease in COVID-19 fatalities in pregnant individuals and 80% decrease in infants 0 years old by the Omicron wave. In contrast, in the rest of the pediatric population that did not access vaccination before the period analyzed, COVID-19 hospitalizations increased >40% during the Delta and Omicron waves. Our analysis suggests that the vaccination strategy in Mexico has been successful to limit population mortality and decrease severe COVID-19, but children in Mexico still need access to SARS-CoV-2 vaccines to limit severe COVID-19, in particular those 1–4 years old.

4.
PLoS One ; 17(2): e0263582, 2022.
Article in English | MEDLINE | ID: covidwho-1910522

ABSTRACT

The membrane protein M of the Porcine Epidemic Diarrhea Virus (PEDV) is the most abundant component of the viral envelope. The M protein plays a central role in the morphogenesis and assembly of the virus through protein interactions of the M-M, M-Spike (S) and M-nucleocapsid (N) type. The M protein is known to induce protective antibodies in pigs and to participate in the antagonistic response of the cellular antiviral system coordinated by the type I and type III interferon pathways. The 3D structure of the PEDV M protein is still unknown. The present work exposes a predicted 3D model of the M protein generated using the Robetta protocol. The M protein model is organized into a transmembrane and a globular region. The obtained 3D model of the PEDV M protein was compared with 3D models of the SARS-CoV-2 M protein created using neural networks and with initial machine learning-based models created using trRosetta. The 3D model of the present study predicted four linear B-cell epitopes (RSVNASSGTG and KHGDYSAVSNPSALT peptides are noteworthy), six discontinuous B-cell epitopes, forty weak binding and fourteen strong binding T-cell epitopes in the CV777 M protein. A high degree of conservation of the epitopes predicted in the PEDV M protein was observed among different PEDV strains isolated in different countries. The data suggest that the M protein could be a potential candidate for the development of new treatments or strategies that activate protective cellular mechanisms against viral diseases.


Subject(s)
Coronavirus Infections/virology , Coronavirus M Proteins/chemistry , Porcine epidemic diarrhea virus/chemistry , Swine Diseases/virology , Swine/virology , Amino Acid Sequence , Animals , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Coronavirus M Proteins/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Models, Molecular , Porcine epidemic diarrhea virus/immunology , Protein Conformation , Swine Diseases/immunology
5.
Front Neurosci ; 16: 867825, 2022.
Article in English | MEDLINE | ID: covidwho-1855403

ABSTRACT

Evidence suggests that SARS-CoV-2 entry into the central nervous system can result in neurological and/or neurodegenerative diseases. In this review, routes of SARS-Cov-2 entry into the brain via neuroinvasive pathways such as transcribrial, ocular surface or hematogenous system are discussed. It is argued that SARS-Cov-2-induced cytokine storm, neuroinflammation and oxidative stress increase the risk of developing neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Further studies on the effects of SARS-CoV-2 and its variants on protein aggregation, glia or microglia activation, and blood-brain barrier are warranted.

6.
Gac Med Mex ; 157(1): 84-89, 2021.
Article in English | MEDLINE | ID: covidwho-1268457

ABSTRACT

The first cases of COVID-19, caused by the virus called SARS-CoV-2, were recorded in Wuhan, China, in December 2019; however, its transmission ability caused for the infection to be practically present throughout the world six months later. The origin of the virus appears to be zoonotic; it has been proposed that it comes from a bat and that it may have had an intermediate host that led to its introduction in the human population. SARS-CoV-2 is an enveloped virus, with a positive single-stranded RNA genome, and it binds to the angiotensin-converting enzyme, present in susceptible cells, to infect the human respiratory system. Although other coronaviruses have been previously known, they have not had the same impact, and, therefore, research on pharmacological treatments is not sufficiently developed to face the current challenge. Almost since the beginning of the epidemic, several molecules have been proposed for the treatment of infection; however, there is not yet a drug available with sufficient effectiveness for treatment. This review describes SARS-CoV-2 main characteristics, its replicative cycle, its possible origin and some advances in the development of antiviral treatments.


Los primeros casos de COVID-19, causada por el virus denominado SARS-CoV-2, se registraron en Wuhan, China, en diciembre de 2019; sin embargo, su capacidad de transmisión ocasionó que seis meses después la infección prácticamente estuviera presente en todo el mundo. El origen del virus parece ser zoonótico; se propone que proviene del murciélago y podría haber tenido un hospedero intermediario que llevó a su introducción en la población humana. SARS-CoV-2 es un virus envuelto, con genoma de ARN de cadena sencilla en sentido positivo y se ancla a la enzima convertidora de angiotensina, presente en las células susceptibles para infectar el sistema respiratorio de los humanos. Aunque previamente se han conocido otros coronavirus, no han tenido el mismo impacto, por lo que la investigación en tratamientos farmacológicos no tiene el desarrollo suficiente para afrontar el reto actual. Casi desde el comienzo de la epidemia se han propuesto moléculas para el tratamiento de la infección, sin embargo, aún no se cuenta con un fármaco con suficiente efectividad terapéutica. En esta revisión se describen las características principales de SARS-CoV-2, su ciclo replicativo, su posible origen y algunos avances en el desarrollo de tratamientos antivirales.


Subject(s)
COVID-19 Drug Treatment , COVID-19/virology , SARS-CoV-2/physiology , SARS-CoV-2/ultrastructure , Humans
SELECTION OF CITATIONS
SEARCH DETAIL